53 research outputs found

    Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic

    Get PDF
    Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19â€Č89N, 10°09â€Č06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20â€Č45N, 9°57â€Č02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m−3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m−3 at NOK) and T. longicornis (to 1,959 m−3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics

    Advertising, earnings prediction and market value: An analysis of persistent UK advertisers

    Get PDF
    YesThis paper examines whether major media advertising expenditures help in predicting future earnings. We consider the role of media advertising in firms’ marketing efforts and posit that persistent advertisers are more likely to benefit from advertising activities in creating long‐lived intangible assets. Employing a sample of persistent UK advertisers over the period 1997–2013, we find that advertising expenditures are significantly positively associated with firms’ future earnings and market value. We also report size and sector‐based differences in the association between advertising and firms’ future earnings. Our additional analysis provides support for the arguments that despite the recent rise in digital advertising budgets, traditional advertising media are still effective in positively influencing firms’ performance. Overall, the results of this study are consistent with the view that advertising expenditures produce intangible assets, at least for firms in certain sectors. These findings have implications for marketers in providing evidence of the value generated by firms’ advertising budgets, for investors in validating the relevance of advertising information in influencing future earnings, and for accounting regulators in relation to the provision of useful insights for any future deliberations on financial reporting policies for advertising expenditures

    The predation impact of juvenile herring <i>Clupea harengus</i> and sprat <i>Sprattus sprattus</i> on estuarine zooplankton

    No full text
    The consumption of estuarine copepods by juvenile herring and sprat during estuarine residency was estimated using fish biomass data and daily rations calculated from two models of feeding in fish: a bioenergetic model and a gastric evacuation model. The bioenergetic model predicted daily rations that were, on average, three times higher than those estimated by a model based on field records of stomach contents. The biomass of herring and sprat in the estuary was negatively correlated with the daily ration suggesting that the clupeid fish populations were resource-limited. Copepod production decreased towards the winter and peaked in spring and summer. The relative importance of predation changed seasonally in function of the migration pattern of herring and sprat. In the spring and the summer, in situ production of copepod biomass was higher than the in situ consumption by fish. During the fall and the winter, consumption exceeded production. This suggests that top–down control exerted by marine pelagic fish may be an important force structuring estuarine copepod populations

    Is advertising for losers? An empirical study from a value creation-value capturing perspective

    No full text
    nrpages: 24status: publishe

    Phytoplankton growth rates in the freshwater tidal reaches of the Schelde estuary (Belgium) estimated using a simple light-limited primary production model

    No full text
    During the course of 1996, phytoplankton was monitored in the turbid, freshwater tidal reaches of the Schelde estuary. Using a simple light-limited primary production model, phytoplankton growth rates were estimated to evaluate whether phytoplankton could attain net positive growth rates and whether growth rates were high enough for a bloom to develop. Two phytoplankton blooms were observed in the freshwater tidal reaches. The first bloom occurred in March and was mainly situated in the most upstream reaches of the freshwater tidal zone, suggesting that it was imported from the tributary river Schelde. The second bloom occurred in July and August. This summer bloom was situated more downstream in the freshwater tidal reaches and appeared to have developed within the estuary. A comparison between phytoplankton growth rates estimated using a simple primary production model and flushing rate of the water indicated that no net increase in phytoplankton biomass was possible in March while phytoplankton could theoretically increase its biomass by 20% per day during summer. Chlorophyllaconcentrations at all times decreased strongly at salinities between 5–10 psu. This decline was ascribed to a combination of salinity stress and light limitation. Phytoplankton biomass and estimated annual net production were much higher in the freshwater tidal zone compared to the brackish reaches of the estuary (salinity > 10 psu) despite mixing depth to euphotic depth ratio's being similar. Possible reasons for this high production include high nutrient concentrations, low zooplankton grazing pressure and import of phytoplankton blooms from the tributary rivers

    Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary

    No full text
    Freshwater tidal estuaries comprise the most upstream reaches of estuaries and are often characterised by the presence of dense bacterial and algal populations which provide a large food source for bacterivorous and algivorous protists. In 1996, the protistan community in the freshwater tidal reaches of the Schelde estuary was monitored to evaluate whether these high food levels are reflected in a similarly high heterotrophic protistan biomass. Protistan distribution patterns were compared to those of metazoan zooplankton to evaluate the possible role of top-down regulation of protists by metazoans. Apart from the algivorous sarcodine Asterocaelum, which reached high densities in summer, heterotrophic protistan biomass was dominated by ciliates and, second in importance, heterotrophic nanoflagellates (HNAN). HNAN abundance was low (annual average 2490 cells ml–1) and did not display large seasonal variation. It is hypothesised that HNAN were top-down controlled by oligotrich ciliates throughout the year and by rotifers in summer. Ciliate abundance was generally relatively high (annual average 65 cells ml–1) and peaked in winter (maximum 450 cells ml–1). The decline of ciliate populations in summer was ascribed to grazing by rotifers, which developed dense populations in that season. In winter, ciliate populations were probably regulated `internally' by carnivorous ciliates (haptorids and Suctoria). Our observations suggest that, in this type of productive ecosystems, the microbial food web is mainly top-down controlled rather than regulated by food availability
    • 

    corecore